The given cube roots
3√2000,3√686,3√648,3√375,3√128,3√24 can be rewritten as follows:
3√2000,3√686,3√648,3√375,3√128,3√24=3√2×2×2×2×5×5×5,3√7×7×7×2,3√2×2×2×3×3×3×3,3√5×5×5×3,3√4×4×4×2,
3√2×2×2×3=3√24×53,3√73×2,3√23×34,3√53×3,3√43×2,3√23×3=3√2(23×53),3√73×2,3√3(23×33),3√53×3,3√43×2,3√23×3
=3√2×103,3√73×2,3√3×63,3√53×3,3√43×2,3√23×3=103√2,73√2,63√3,53√3,43√2,23√3={43√2,73√2,103√2},{23√3,53√3,63√3}={3√128,3√686,3√2000},{3√24,3√375,3√648}
Hence, the required surds are {3√128,3√686,3√2000} and {3√24,3√375,3√648}.