wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Compute the value of the expression , 15[tan2π16+tan22π16+tan23π13+...+tan27π16].

Open in App
Solution

tanθ+cotθ=secθcscθ
tan2θ+cot2θ+2=sec2θcsc2θ
tan2θ+cot2θ=4sin2(2θ)2
tan2π16+tan24π16=tan2(π16)+cot2(π16)
=4sin2(π8)2
tan22π16+tan26π16=tan2(2π16)+cot2(2π16)
=4sin2(π4)2=6
tan23π16+tan25π16=tan2(3π16)+cot2(3π16)
=4sin2(3π8)2=4cos2π82
15[tan2(π16)+tan2(2π16)+.........+tan2(7π16)]
=15[(4sin2(π8)2)+6+(4cos2(π8)2)+tan2(4π16)]
=15[4(1sin2(π8)+1cos2(π8))+3]
=15[4sin2(π8)cos2(π8)+3]
=15[16sin2(π4)+3]
=15(32+3)=7

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon