Consider (1+x+x2)2n=4n∑r=0arxr, where a0,a1,a2......a4n are real numbers and n is a positive integer The value of n−1∑r=0a2r is
A
9n−2a2n−14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9n+2a2n+14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
9n−2a2n+14
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
9n+2a2n−14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C9n−2a2n+14 (1+x+x2)2n=a0+a1x+a2x2...+a4nx4n Substituting x=1, we get 32n=a0+a1+a2...+a4n ...(i) Substituting x=−1, we get 12n=a0−a1+a2...+a4n ...(ii) 32n+1=2(a0+a2+a4...+a4n) 32n+12=a0+a2+a4...+a4n Now a4n−r=ar 32n+12=(a0+a2+a4...+a2n−2)+a2n+(a2n+2+a2n+4+a2n+6...+a4n) 32n−2a2+12=2(a0+a2+a4...+a4n) a0+a2+a4...+a4n=32n−2a2+14 ∑n−1r=1a2r=32n−2a2+14