The correct option is D radius of the circle is a units
Given x=a√2+acosθ, y=a√2+asinθ
⇒x−a√2=acosθ …(1)
and y−a√2=asinθ …(2)
Squaring and adding equations (1) and (2)
(x−a√2)2+(y−a√2)2=a2cos2θ+a2sin2θ
⇒(x−a√2)2+(y−a√2)2=a2
Check for (0,0)
(0−a√2)2+(0−a√2)2=a2
So, circle passes through the origin.
Check for (a2,a2)
(a2−a√2)2+(a2−a√2)2=a2+a22−√2a2≠a2
So, circle does not pass through (a2,a2)