CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Consider a function f(x) and a series S are defined as
f(x)=x0x2ln(1x2) dx S=115+127+139+ .
​​​​​​​If S can be expressed as S=ABln2. Then

A
f(1) is not a finite number.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(a)=kS
(where a and k are some positive real constant)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A=89
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
B=23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
C A=89
D B=23
We know that,
ln(1x)=[x+x22+x33+]
Putting xx2,
ln(1x2)=[x2+x42+x63+]x2ln(1x2)=[x4+x62+x83+]10x2ln(1x2) dx=10[x4+x62+x83+] dxf(1)=S (1)
f(a)=kSa=1,k=1

Now,
f(1)=10x2ln(1x2) dxUsing integration by partsf(1)=[x33ln(1x2)]1010x3(2x)3(1x2) dxf(1)=[x33ln(1x2)]102310x41x2 dx
Let,
I=10x41x2 dxI=101x411x2 dxI=10(1+x2) dx1011x2 dxI=43121011x+11+x dxI=4312[ln|1+x|ln|1x|]10
Therefore,
f(1)=89+[x33ln(1+x)+x33ln(1x) +13ln(1+x)13ln(1x)]10=89+[x3+13ln(1+x)+x313ln(1x)]10=89+23ln2+limx1x313ln(1x)
Let,
L=limx1x313ln(1x)L=limx1x2+x+13ln(1x)1x1L=limx1ln(1x)1x1
Using L'hospital's Rule,
L=limx111x1(x1)2=0
So,
f(1)=89+23ln2=SS=8923ln2S=86ln290.5
Hence, f(1) is finite.
A=89, B=23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon