1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Ratios
Consider ΔA...
Question
Consider
Δ
ACB, right-angled at C, in which
A
B
=
29
u
n
i
t
s
,
B
C
=
21
u
n
i
t
s
and
∠
A
B
C
=
θ
. Determine the value of
s
i
n
2
θ
+
c
o
s
2
θ
Open in App
Solution
In right angled triangle
A
B
C
,
hypotenuse
2
=
perpendicular
2
+
base
2
A
B
2
=
A
C
2
+
B
C
2
⇒
A
C
2
=
A
B
2
−
B
C
2
⇒
A
C
2
=
(
29
)
2
−
(
21
)
2
⇒
A
C
2
=
841
−
441
⇒
A
C
=
√
400
=
20
Therefore,
sin
θ
=
Perpendicular
Hypotenuse
⇒
sin
θ
=
A
C
A
B
⇒
sin
θ
=
20
29
Similarly,
cos
θ
=
Base
Hypotenuse
⇒
cos
θ
=
B
C
A
B
⇒
cos
θ
=
21
29
∴
sin
2
θ
+
cos
2
θ
=
(
20
29
)
2
+
(
20
29
)
2
=
400
841
+
441
841
=
400
+
441
841
=
1
Hence the value of
sin
2
θ
+
cos
2
θ
is
1
.
Suggest Corrections
2
Similar questions
Q.
Consider
△
A
C
B
, right angled at
C
, in which
A
B
=
29
units,
B
C
=
21
units
∠
A
B
C
=
θ
. Determine the value of
(i)
cos
2
θ
+
sin
2
θ
(ii)
cos
2
θ
−
sin
2
θ
Q.
Consider
△
A
C
B
,
right-angled at C, in which
A
B
=
29
units,
B
C
=
21
units and
∠
A
B
C
=
θ
. Determine the values of
c
o
s
2
θ
−
s
i
n
2
θ
.
Q.
Given
Δ
ACB right angled at C in which AB = 29 units, BC = 21 units and
∠
ABC =
θ
. Determine the value of
cos
2
θ
+
sin
2
θ
Q.
In a right angle triangle ABC right angle at B ,
∠
A
B
C
=
θ
, AB = 2cm and BC = 1cm . Find the value of
s
i
n
2
θ
+
t
a
n
2
θ
Q.
Given a ∆ABC, in which ∠C = 90°, ∠ABC = θ°, BC = 21 units, AB = 29 units.
Show that (cos
2
θ − sin
2
θ) =
41
841
.