Consider ΔABC with A≡(→a),B≡(→b) and C=(→c), If →b.(→a+→c)=→b.→b+→a.→c;∣∣→b−→a∣∣=3;∣∣→c−→b∣∣=4 then the angle between the medians ¯¯¯¯¯¯¯¯¯¯AM and ¯¯¯¯¯¯¯¯¯BD is
A
π−cos−1(15√13)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π−cos−1(113√5)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos−1(15√13)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos−1(113√5)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ−cos−1(15√13)
→b.(→a+→c)=→b.→b+→a.→c
→b.(→a−→b)+→c.(→b−→a)=0
(→b−→c).(→a−→b)=0
⇒ angle between →b−→c & →a−→b
Let B be the origin & A(3^i),C(4^j) then M(2^j) & D(3^i+4^j2)