The correct option is C No real values of θ
Multiplying and dividing by 1−icosθ
(1−isinθ)(1−icosθ)1+cos2θ
=1−i(cosθ+sinθ)−sin2θ21+cos2(θ)
=1−sin2θ21+cos2(θ)−i(cosθ+sinθ)1+cos2(θ)
If z is purely imaginary.
Then
1−sin2θ21+cos2(θ)=0
1−sin2θ2=0
1=sin2θ2
sin2θ=2
This contradictory, since, sinθϵ[−1,1]
Hence, no values of θ is possible.