1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Special Integrals - 2
Consider the ...
Question
Consider the function f : R
+
→
-
9
,
∞
given by f(x) = 5x
2
+ 6x
-
9. Prove that f is invertible with f
-
1
(y) =
54
+
5
y
-
3
5
. [CBSE 2015]
Open in App
Solution
We
have
,
f
x
=
5
x
2
+
6
x
-
9
Let
y
=
5
x
2
+
6
x
-
9
=
5
x
2
+
6
5
x
-
9
5
=
5
x
2
+
2
×
x
×
3
5
+
9
25
-
9
25
-
9
5
=
5
x
+
3
5
2
-
9
25
-
9
5
=
5
x
+
3
5
2
-
9
5
-
9
=
5
x
+
3
5
2
-
54
5
⇒
y
+
54
5
=
5
x
+
3
5
2
⇒
5
y
+
54
25
=
x
+
3
5
2
⇒
5
y
+
54
25
=
x
+
3
5
⇒
x
=
5
y
+
54
5
-
3
5
⇒
x
=
5
y
+
54
-
3
5
Let
g
y
=
5
y
+
54
-
3
5
Now
,
f
o
g
y
=
f
g
y
=
f
5
y
+
54
-
3
5
=
5
5
y
+
54
-
3
5
2
+
6
5
y
+
54
-
3
5
-
9
=
5
5
y
+
54
+
9
-
6
5
y
+
54
25
+
6
5
y
+
54
-
18
5
-
9
=
5
y
+
63
-
6
5
y
+
54
5
+
6
5
y
+
54
-
18
5
-
9
=
5
y
+
63
-
18
-
45
5
=
y
=
I
Y
,
Identity
function
Also
,
g
o
f
x
=
g
f
x
=
g
5
x
2
+
6
x
-
9
=
5
5
x
2
+
6
x
-
9
+
54
-
3
5
=
25
x
2
+
30
x
-
45
+
54
-
3
5
=
25
x
2
+
30
x
+
9
-
3
5
=
5
x
+
3
2
-
3
5
=
5
x
+
3
-
3
5
=
x
=
I
X
,
Identity
function
So
,
f
is
invertible
.
Also
,
f
-
1
y
=
g
y
=
5
y
+
54
-
3
5
Suggest Corrections
0
Similar questions
Q.
Consider
f
:
R
+
→
[
−
9
,
∞
]
given by
f
(
x
)
=
5
x
2
+
6
x
−
9
. Prove that
f
is invertible with
f
′
(
y
)
=
(
√
54
+
5
y
−
3
5
)
.
Q.
Consider
f
:
R
+
ā [ā5,
ā
) given by
f
(
x
) = 9
x
2
+ 6
x
ā 5. Show that
f
is invertible with
.