Consider the function f:(−∞,∞)→(−∞,∞) defined by f(x)=x2−ax+1x2+ax+1 , 0<a<2.
Which of the following is true?
A
(2+a)2f′′(1)+(2−a)2f′′(−1)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(2−a)2f′′(1)−(2+a)2f′′(−1)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f′(1)f′(−1)=(2−a)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f′(1)f′(−1)=−(2+a)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(2+a)2f′′(1)+(2−a)2f′′(−1)=0 f(x)=x2−ax+1x2+ax+1 f′(x)=(x2+ax+1)(2x−a)−(x2−ax+1)(2x+a)(x2+ax+1)2 f′′(x)=4ax(x2+ax+1)2−4ax(x2−1)(2x+a)(x2+ax+1)(x2+ax+1)4 f′′(1)=4a(2+a)2,f′′(−1)=−4a(2−a)2 ∴(2+a)2f′′(1)+(2−a)2f′′(−1)=0