1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Opposite & Adjacent Sides in a Right Angled Triangle
Consider AC...
Question
Consider
△
A
C
B
, right angled at
C
, in which
A
B
=
29
units,
B
C
=
21
units
∠
A
B
C
=
θ
. Determine the value of
(i)
cos
2
θ
+
sin
2
θ
(ii)
cos
2
θ
−
sin
2
θ
Open in App
Solution
By Pythagoras theorem,
A
B
2
=
A
C
2
+
B
C
2
⇒
A
C
2
=
A
B
2
−
B
C
2
⇒
A
C
2
=
29
2
−
21
2
=
(
29
+
21
)
(
29
−
21
)
=
50
×
8
⇒
A
C
2
=
25
×
16
⇒
A
C
=
5
×
4
=
20
units
⇒
cos
θ
=
B
C
A
B
=
21
29
,
sin
θ
=
A
C
A
B
=
20
29
⇒
sin
2
θ
+
cos
2
θ
=
21
2
+
20
2
29
2
=
29
2
29
2
=
1
⇒
cos
2
θ
−
sin
2
θ
=
21
2
−
20
2
29
2
=
41
841
.
Suggest Corrections
1
Similar questions
Q.
Consider
△
A
C
B
,
right-angled at C, in which
A
B
=
29
units,
B
C
=
21
units and
∠
A
B
C
=
θ
. Determine the values of
c
o
s
2
θ
−
s
i
n
2
θ
.
Q.
Consider
Δ
ACB, right-angled at C, in which
A
B
=
29
u
n
i
t
s
,
B
C
=
21
u
n
i
t
s
and
∠
A
B
C
=
θ
. Determine the value of
s
i
n
2
θ
+
c
o
s
2
θ
Q.
Given a ∆ABC, in which ∠C = 90°, ∠ABC = θ°, BC = 21 units, AB = 29 units.
Show that (cos
2
θ − sin
2
θ) =
41
841
.