wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos2xdydx+y=tanx (0x<π2)

Open in App
Solution

cos2xdydx+y=tanx
dydx+1cos2xy=tanxcos2x
dydxsec2xy=tanxsec2x
dydx+p.y=Q(x)
Integrating factor =ePdx=esec2xdx=etanx
ePdx.y=ePdxQdx+c
But ePdx=etanx
etanx.y=etanx.tanxsec2xdx+c
Let tanx=t
ddxtanx=dtdx
sec2x=dtdx
etanxtanxsec2xdx
et.tdt
t.etdt
tetet+c ( integration by parts )
etanx.y=tanxetanxetanx+c
y=tanx1+ctanx.
Hence, the answer is tanx1+ctanx.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon