Algebric identity,
a3−b3=(a−b)3+3a2b−3ab2
a3+b3=(a+b)3−3ab(a+b)
=cos3x−[(cos(60+x)+cos(60−x))3−3cos(60+x)cos60−x(cos(60+x)cos60−x)]
=cos3x−[(2×12×cosx)3−32[cos2x+cos120](cosx)]
=cos3x−[(cosx)3−32[2cos2x−32]cosx]
=(3cos2x−94)cosx[cosAcosB=12(cos(A−B)+cos(A+B))]
=3(4cos3x−3cosx)4
f(x)=3cos3x4
∴ range of f(x)ϵ[−34,34]=[−k4,k4]
k=3