wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos π15 cos 2π15 cos 3π15 cos 4π15 cos 5π15 cos 6π15 cos 7π15=1128

Open in App
Solution

cos 5π15= cos π3=12cos 7π15= cos (π8π15)cos 7π15=cos 8π15Now LHS= cos π15 cos 2π15 cos 4π15 cos 3π15 cos 5π15 cos 6π15 cos 7π15=[cos π15 cos 2π15 cos 4π15(cos 8π15)](cos 3π15 cos 6π15)12

=2324 sin π15. [2 sin π15 cos π15 cos 2π15 cos 4π15 cos 8π15]×28 sin 3π15 (2 sin 3π15 cos 3π15 cos 6π15)=2316 sin π15 [sin 2π15 cos 2π15 cos 4π15 cos 8π15]×28 sin 3π15 (sin 6π15 cos 6π15)=2216 sin π15 [sin 2π15 cos 2π15 cos 4π15 cos 8π15]×18 sin 3π15 (2sin 6π15 cos 6π15)

=216 sin π15 [sin 8π15 cos 8π15]sin 12π158 sin3π15=116 sin π15 (sin 16π15)sin 12π158 sin3π15=sin(π+π15)128 sin π15×sin(π3π15)sin 3π15=sinπ15128 sin π15×sin3π15sin 3π15=1128


flag
Suggest Corrections
thumbs-up
39
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon