The correct option is A 0
Let x=cos(π22)cos(π23)…⋯cos(π2′2)⋅sin(π212) we know 2sinAcosA=sin2A2x=cos(π22)⋅⋯⋅cos(π211)⋅2cos(π2′2)sin(π212)2x=cos(π22)⋅⋯⋅cos(π2′′)sin(π2′′) similarly. 210x=2cos(π22)sin(π22)210x=sin(π2)
210x=1x=1210x=11024 option B is correct