1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
cos [tan -1 ...
Question
c
o
s
[
t
a
n
−
1
{
s
i
n
(
c
o
t
−
1
x
)
}
]
=
√
1
+
x
2
2
+
x
2
Open in App
Solution
L.H.S
=
cos
[
tan
−
1
{
sin
(
cot
−
1
x
)
}
]
Let
x
=
cot
θ
L.H.S
=
cos
[
tan
−
1
{
sin
θ
}
]
=
cos
[
tan
−
1
{
1
√
1
+
cot
2
θ
}
]
=
cos
[
tan
−
1
{
1
√
1
+
x
2
}
]
......
(
1
)
Let
θ
1
=
tan
−
1
{
1
√
1
+
x
2
}
⇒
tan
θ
1
=
1
√
1
+
x
2
⇒
cos
θ
1
=
√
1
+
x
2
√
2
+
x
2
⇒
θ
1
=
cos
−
1
(
√
1
+
x
2
√
2
+
x
2
)
Now put
θ
1
in equation
(
1
)
we get
cos
[
cos
−
1
(
√
1
+
x
2
√
2
+
x
2
)
]
=
√
1
+
x
2
√
2
+
x
2
=
R.H.S
Hence proved.
Suggest Corrections
0
Similar questions
Q.
c
o
s
[
t
a
n
−
1
(
s
i
n
(
c
o
t
−
1
x
)
)
]
is equal to-
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
3
s
i
n
−
1
2
x
1
+
x
2
−
4
c
o
s
−
1
1
−
x
2
1
+
x
2
+
2
t
a
n
−
1
2
x
1
−
x
2
=
π
3
(b)
s
i
n
[
(
1
/
5
)
c
o
s
−
1
x
]
=
1
(c)
t
a
n
−
1
√
x
2
+
x
+
s
i
n
−
1
√
x
2
+
x
+
1
=
π
2
Q.
c
o
s
[
t
a
n
−
1
{
s
i
n
(
c
o
t
−
1
x
)
}
]
is equal to