cos2π6+θ-sin2π6-θ=?
12cos2θ
0
-12cos2θ
12
Explanation for the correct option:
Given, cos2(π6+θ)–sin2(π6–θ)
Use the identity cos2A–sin2B=cos(A+B)cos(A–B),
=cosπ6+θ+π6–θcosπ6+θ–π6+θ
=cos2π6cos2θ
=cosπ3cos2θ
=(12)cos2θ
Hence, Option ‘A’ is Correct.
Prove that:
cos3 2θ+3 cos 2θ=4(cos6θ−sin6θ)
6(sin6 θ+cos6 θ)−9(sin4 θ+cos4 θ) is equal to