cosθ(tanθ+2)(2tanθ+1)=2secθ+5sinθ
LHS=cosθ(tanθ+2)(2tanθ+1)
=cosθ(sinθcosθ+2)(2sinθcosθ+1)(∵tanθsinθcosθ)
=cos(sinθ+2cosθ)(2sinθ+cosθ)cosθ.cosθ
=(2sin2θ+sinθcosθ+4sinθcosθ+2cos2θ)cosθ
=2(sin2θ+cos2θ)+5sinθcosθcosθ
=2secθ+5sinθ=RHS Hence proved.
Show that : cos θ (tan θ + 2 ) (2 tan θ +1 ) = 2 sec θ + 5 sin θ