cot-1(cosα)-tan-1(cosα)=x, then sinx is
tan2α2
cot2α2
tanα
cotα2
Explanation for the correct option:
Given, cot−1cosα−tan−1cosα=x
⇒ tan−11cosα−tan−1cosα=x
⇒ tan−11cosα−cosα1+cosαcosα=x
⇒ tan−11−cosα2cosα=x
⇒ tanx=1−cosα2cosα
Here, P=1−cosα and B=2cosα
⇒ H=(1−cosα)2+4cosα ; ∵Hypotenuse=Perpendicular2+Base2
=(1+cosα)2
=1+cosα
∴sinx=PH
=1−cosα1+cosα
=2sin2α22cos2α2
=tan2α2
Hence, Option ‘A’ is Correct.
If tan α=x+1,tanβ=x−1. show that 2 cot (α−β)=x2.