1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
General Solution of Trigonometric Equation
θ =78, then e...
Question
cot
θ
=
7
8
, then evaluate
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
.
Open in App
Solution
cot
θ
=
7
8
=
B
a
s
e
p
e
r
p
e
n
d
i
c
u
l
a
r
⇒
Hypotenuse
=
√
p
2
+
B
2
=
√
7
2
+
8
2
=
√
49
+
64
=
√
113
=
√
113
∴
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
=
1
−
sin
2
θ
1
−
cos
2
θ
=
1
−
8
2
113
1
−
7
2
113
⇒
113
−
64
113
−
49
=
49
64
.
Suggest Corrections
5
Similar questions
Q.
If
cot
θ
=
7
8
, evaluate:
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
Q.
If
cot
θ
=
7
8
, the value of
(
1
+
cos
θ
)
(
1
−
cos
θ
)
(
1
−
sin
θ
)
(
1
+
sin
θ
)
is:
Q.
If
cot
θ
=
15
8
then
evaluate
1
+
sin
θ
1
-
sin
θ
1
+
cos
θ
1
-
cos
θ
.
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ