1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Range of Trigonometric Ratios from 0 to 90 Degrees
2 θθ-11+sinθ=...
Question
cot
2
θ
(
secθ
-
1
)
(
1
+
sinθ
)
=
sec
2
θ
.
1
-
sinθ
1
+
secθ
Open in App
Solution
LHS=
cot
2
θ
(
sec
θ
−
1
)
(
1
+
sin
θ
)
=
cos
2
θ
sin
2
θ
(
1
cos
θ
−
1
)
(
1
+
sin
θ
)
=
cos
θ
sin
2
θ
−
cos
2
θ
sin
2
θ
(
1
+
sin
θ
)
=
cos
θ
(
1
−
cos
θ
)
sin
2
θ
(
1
+
sin
θ
)
=
cos
θ
(
1
−
cos
θ
)
(
1
−
cos
2
θ
)
(
1
+
sin
θ
)
=
cos
θ
(
1
−
cos
θ
)
(
1+cos
θ
)
(
1
−
cos
θ
)
(
1
+
sin
θ
)
=
cos
θ
(
1
+
1
sec
θ
)
(
1
+
sin
θ
)
=
cos
θ
sec
θ
(
sec
θ
+1
)
(
1
+
sin
θ
)
=
1
(
sec
θ
+1
)
(
1
+
sin
θ
)
=
(
1
−
sin
θ
)
(
sec
θ
+1
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
[Multiplying the numerator and denominator by (1-sinθ)]
=
(
1
−
sin
θ
)
(
sec
θ
+1
)
(
1
−
sin
2
θ
)
=
(
1
−
sin
θ
)
(
sec
θ
+1
)
cos
2
θ
=
sec
2
θ
(
1
−
sin
θ
)
(
sec
θ
+1
)
=RHS
Hence, LHS = RHS
Suggest Corrections
1
Similar questions
Q.
Prove that
cot
2
θ
sec
θ
-
1
1
+
sin
θ
+
sec
2
θ
sin
θ
-
1
1
+
sec
θ
=
0
Q.
If cot
θ
=
7
8
,evaluate:
(i)
(
1
+
s
i
n
θ
)
(
1
−
s
i
n
θ
)
(
1
+
c
o
s
θ
)
(
1
−
c
o
s
θ
)
(ii)
c
o
t
2
θ
Q.
Prove the following.
(1) secθ (1 – sinθ) (secθ + tanθ) = 1
(2) (secθ + tanθ) (1 – sinθ) = cosθ
(3) sec
2
θ + cosec
2
θ = sec
2
θ × cosec
2
θ
(4) cot
2
θ – tan
2
θ = cosec
2
θ – sec
2
θ
(5) tan
4
θ + tan
2
θ = sec
4
θ – sec
2
θ
(6)
1
1
-
sin
θ
+
1
1
+
sin
θ
=
2
sec
2
θ
(7) sec
6
x
– tan
6
x
= 1 + 3sec
2
x
× tan
2
x
(8)
tan
θ
s
e
c
θ
+
1
=
s
e
c
θ
-
1
tan
θ
(9)
tan
3
θ
-
1
tan
θ
-
1
=
sec
2
θ
+
tan
θ
(10)
sin
θ
-
cos
θ
+
1
sin
θ
+
cos
θ
-
1
=
1
sin
θ
-
tan
θ
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ