wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cot2θ(secθ-1)(1+sinθ)=sec2θ.1-sinθ1+secθ

Open in App
Solution

LHS=cot2θ(secθ1)(1+sinθ) =cos2θsin2θ(1cosθ1)(1+sinθ) =cosθsin2θcos2θsin2θ(1+sinθ) =cosθ(1cosθ)sin2θ(1+sinθ) =cosθ(1cosθ)(1cos2θ)(1+sinθ) =cosθ(1cosθ)(1+cosθ)(1cosθ)(1+sinθ) =cosθ(1+1secθ)(1+sinθ) =cosθsecθ(secθ+1)(1+sinθ) =1(secθ+1)(1+sinθ) =(1sinθ)(secθ+1)(1+sinθ)(1sinθ) [Multiplying the numerator and denominator by (1-sinθ)] =(1sinθ)(secθ+1)(1sin2θ) =(1sinθ)(secθ+1)cos2θ =sec2θ(1sinθ)(secθ+1) =RHS
Hence, LHS = RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon