∫ cot5 x dx
= ∫ cot4 x . cot x dx
= ∫ (cosec2 x – 1)2 cot x dx
= ∫ (cosec4 x – 2 cosec2 x + 1) cot x dx
= ∫ cosec4 x . cot x dx – 2 ∫ cot x . cosec2 x dx + ∫ cot x dx
= ∫ cosec2 x . cosec2 x . cot x . dx – 2 ∫ cot x cosec2 x dx + ∫ cot x dx
=∫ (1 + cot 2 x) . cot x . cosec2 x dx – 2 ∫ cot x cosec2 x dx + ∫ cot x dx
= ∫ (cot x + cot3 x) cosec2 x dx – 2 ∫ cot x cosec2 x dx + ∫ cot x dx
Now, let I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ∫ cot x cosec2 x dx
And I2= ∫ cot x dx
First we integrate I1
I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ∫ cot x cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt
⇒ cosec2 x dx = – dt
I1= ∫ (t + t3) (– dt) – 2∫ t (–dt)
= –∫(t + t3) + 2∫t dt
Now we integrate I2
I2= ∫ cot x dx
=
Now, ∫ cot5 x dx=I1 + I2
=
=