wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cot5 x dx

Open in App
Solution

∫ cot5 x dx
= ∫ cot4 x . cot x dx
= ∫ (cosec2 x – 1)2 cot x dx
= ∫ (cosec4 x – 2 cosec2 x + 1) cot x dx
= ∫ cosec4 x . cot x dx – 2 ​∫ cot x . cosec2 x dx + ​∫ cot x dx
= ∫ cosec2 x . cosec2 x . cot x . dx – 2 ​∫ cot x cosec2 x dx + ∫​ cot x dx
=∫ (1 + cot 2 x) . cot x . cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx
= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx + ​∫ cot x dx
Now, let I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
And I2= ∫ cot x dx
First we integrate I1
I1= ∫ (cot x + cot3 x) cosec2 x dx – 2 ​∫ cot x cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt
⇒ cosec2 x dx = – dt

I1= ∫ (t + t3) (– dt) – 2​∫ t (–dt)
= –∫(t + t3) + 2​∫t dt
=-t22-t44+2.t22+ C1=t22-t44+C1=cot2 x2-cot4 x4+C1
Now we integrate I2
I2= ∫ cot x dx
= logsin x+C2
Now, ∫ cot5 x dx=I1 + I2
= -14cot4x+12cot2x+logsin x+C1+C2
= -14cot4x+12cot2x+logsin x+C C=C1+C2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon