ddx(xsinx)=
(sinx+xcosx)2(xsinx)
(sinx+xcosx)(xsinx)
(xsinx+xcosx)2(xsinx)
(xsinx+xcosx)(2xsinx)
Find the differentiation of given function:
Given, y=(xsinx)
Differentiate it with respect to x, we get
∴dydx=12(xsinx)(xcosx+sinx)=(sinx+xcosx)2(xsinx)
Hence, option (A) is correct.
Evaluate :cos48°-sin42°