ddxsin-12ax(1–a2x2)=
2a(a2–x2)
a(a2–x2)
2a(1–a2x2)
a(1–a2x2)
Find the differentiation of given function:
Given, y=sin-12ax(1–a2x2)
Put ax=sinθ
⇒y=sin-12sinθ(1–sin2θ)
=sin-1(2sinθcos2θ)=sin-1(2sinθcosθ)=sin-1sin2θ=2θ=2sin-1(ax)
Differentiate it with respect to x, we get
∴dydx=2(1–a2x2)×a=2a(1–a2x2) ∵ddxsin-1x=11-x2
Hence, option (C) is correct.