ddxx+1x2=
1-1x2
1+1x2
1-12x
none of these
Explanation for correct option:
Step-1: Simplify the given data
Given, ddxx+1x2
=ddxx+1x+2x×1x=ddxx+1x+2
Step-2: Differentiate w.r.t. x.
=1+-1x2+0=1-1x2
Hence, correct answer is option A
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.