The correct option is A Δ23
On solving
Δ2=∣∣
∣
∣∣xy2z3x4y5z6x7y8z9∣∣
∣
∣∣=(xy2z3)((z3−y3)(z3−x3)(y3−x3))
Now
Δ1=∣∣
∣
∣∣y5z6(z3−y3)x4z6(x3−z3)x4y5(y3−x3)y2z3(y6−z6)xz3(z6−x6)xy2(x6−y6)y2z3(z3−y3)xz3(x3−z3)xy2(y3−x3)∣∣
∣
∣∣=(y2z3(z3−y3))(xz3(z3−x3))(xy2(y3−x3))∣∣
∣
∣∣y3z3−x3z3x3y3−(y3+z3)(z3+x3)−(x3+y3)1−11∣∣
∣
∣∣
Applying C2→C2+C1,C3→C3−C1
=x2y4z6(z3−y3)(z3−x3)(y3−x3)∣∣
∣
∣∣y3z3z3(y3−x3)y3(x3−z3)−(y3+z3)x3−y3z3−x3100∣∣
∣
∣∣=(xy2z3)2((z3−y3)(z3−x3)(y3−x3))2=Δ23
Therefore, Δ=Δ23
Hence, option 'A' is correct.