Derive the equation of a plane passing through three non-collinear points both in the vector and cartesian form .
Let A(¯a)=(x1,y1,z1)
B=(¯b)(x2,y2,z2)
C=(¯c)(x3,y3,z3) be three non collinear points
Let P(¯r)=(x,y,z) be any point in the plane
Vector equation:⇒P,A,B,C are coplanar⇒¯AP,¯AB,¯AC are coplanar⇒[¯AP,¯AB,¯AC]=0⇒[¯r−¯a¯b−¯a]=0⇒(¯r−¯a).(¯b−¯a)×(¯c−¯a)=0
Scalar equation⇒∣∣ ∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣ ∣∣=0