1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Binomial Theorem
723+1963+3712...
Question
7
2
3
+
19
6
3
+
37
12
3
+
61
20
3
+
.
.
.
.
.
.
∞
.
Open in App
Solution
7
2
3
+
19
6
3
+
37
12
3
+
61
20
3
∞
∑
r
=
1
3
r
2
+
3
r
+
1
(
r
2
+
r
)
3
=
3
(
r
+
1
)
3
−
r
3
r
3
(
r
+
1
)
3
=
∞
∑
r
=
1
1
r
3
−
1
(
r
+
1
)
3
=
(
1
1
3
−
1
2
3
)
+
(
1
2
3
−
1
3
3
)
=
1.
Suggest Corrections
0
Similar questions
Q.
27, 63, 123, 153, 203, 273
Q.
11
3
+
12
3
+
13
3
+
.
.
.
+
20
3
=
Q.
Find the cube root
64
by successive subtraction of numbers:
(
1
,
7
,
19
,
37
,
61
,
91
,
127
,
169
,
217
,
271
,
331
,
397
,
.
.
.
)
Q.
Verify the following:
(i) 19 × {7 + (−3)} = 19 × 7 + 19 × (−3)
(ii) (−23) {(−5) + (+19)} = (−23) × (−5) + (−23) × (+19)
Q.
Simplify:
(i)
3
2
-
2
3
3
2
+
2
3
+
12
3
-
2
(ii)
7
+
3
5
3
+
5
-
7
-
3
5
3
-
5