The correct option is
A tan8Atan2ASolution :-
sec8A−1sec4A−1=1/cos8A−11/cos4A−1
⇒1−cos8Acos8A1−cos4Acos4A=cos4A(1−cos8A)cos8A(1−cos4A)
⇒cos4A(1−(1−2sin24A))cos8A(1−(1−2sin22A))=cos4A.sin22Acos8A.sin22A
⇒(2cos4Asin4A)sin4A(2cos8Asin22A)=sin8Asin4A2cos8A.sin22A
⇒tan8A(sin4A2sin2A)=tan8A.(2sin2A.cos2A2sin22A)
⇒tan8Atan2A