The correct option is D 39 J
mass of annular disc, M=8 kg,
Mass of cat, m=2 kg
Outer radius, R2=0.8 m
Inner radius, R1=0.4 m
Initial angular speed, ωi=8 rad/s
⇒When cat is at outer edge,the moment of inertia of (cat & disc) system
Ii=mR22+M(R22+R21)2
Ii=2×0.82+8(0.82+0.42)2
∴Ii=4.48 kg.m2
Similarly, final moment of inertia when cat is at inner edge
If=mR21+M(R22+R21)2
If=2×0.42+8(0.82+0.42)2
∴If=3.52 kg.m2
τext=0,since forces acting between cat and annular disc is internal
hence, Li=Lf
⇒Iiωi=Ifωf
⇒4.48×8=3.52×ωf
⇒ωf=10.18 rad/s
Since, system only contain KERot,
⇒ΔKE=KEf−KEi
ΔKE=12If(ωf)2−12Ii(ωi)2
ΔKE=12×3.52×(10.18)2−12×4.48×(8)2
∴ΔKE≃39 J
Here, +ve sign represents increase in kinetic energy.