wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate
sinxxcosxxsinx+cosx

Open in App
Solution

Let f(x)=sinxxcosxxsinx+cosx which is of the form uv
f(x)=uvvuv2
=(xsinx+cosx)ddx(sinxxcosx)(sinxxcosx)ddx(xsinx+cosx)(xsinx+cosx)2
=(xsinx+cosx)(cosxcosx+xsinx)(sinxxcosx)(xcosx+sinxsinx)(xsinx+cosx)2
=(xsinx+cosx)(xsinx)(sinxxcosx)(xcosx)(xsinx+cosx)2
=x2sin2x+xsinxcosxxsinxcosx+x2cos2x(xsinx+cosx)2
=x2sin2x+x2cos2x(xsinx+cosx)2
=x2(sin2x+cos2x)(xsinx+cosx)2
=x2(xsinx+cosx)2 since sin2x+cos2x=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon