wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate tanxn+tannxtan1a+xn1axn.

A
(sec2xn).nxn1+ntann1x.sec2x[1(1x2n)]nxn1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(sec2xn).nxn1+ntann1x.sec2x[1(1+x2n)]nxn
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(sec2xn).nxn1+ntannx.sec2x[1(1+x2n)]nxn1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(sec2xn).nxn1+ntann1x.sec2x[1(1+x2n)]nxn1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D (sec2xn).nxn1+ntann1x.sec2x[1(1+x2n)]nxn1
Let y=tanxn+tannxtan1a+xn1axn.

y=tanxn+tannx(tan1a+tan1xn)

dydx=(sec2xn).nxn1+ntann1x.sec2x0[1(1+x2n)]nxn1

=(sec2xn).nxn1+ntann1x.sec2x[1(1+x2n)]nxn1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon