f(x)=tan(2x+1)
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
⇒f′(x)=limh→0tan[2(x+h)+1]−tan(2x+1)h
⇒f′(x)=limh→0sin(2x+2h+1)cos(2x+1)−cos(2x+2h+1)sin(2x+1)h cos(2x+2h+1)cos(2x+1)
⇒f′(x)=limh→0sin(2x+2h+1−2x−1)h cos(2x+2h+1)cos(2x+1)
⇒f′(x)=limh→0sin(2h)2h×2cos(2x+2h+1)cos(2x+1)
⇒f′(x)=1×2cos(2x+0+1)cos(2x+1)
[∵limh→0sin(h)h=1]
⇒f′(x)=2cos2(2x+1)
⇒f′(x)=2 sec2(2x+1)