wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:
(ii) tan(2x+1)

Open in App
Solution

f(x)=tan(2x+1)

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0tan[2(x+h)+1]tan(2x+1)h

f(x)=limh0sin(2x+2h+1)cos(2x+1)cos(2x+2h+1)sin(2x+1)h cos(2x+2h+1)cos(2x+1)

f(x)=limh0sin(2x+2h+12x1)h cos(2x+2h+1)cos(2x+1)

f(x)=limh0sin(2h)2h×2cos(2x+2h+1)cos(2x+1)

f(x)=1×2cos(2x+0+1)cos(2x+1)

[limh0sin(h)h=1]

f(x)=2cos2(2x+1)

f(x)=2 sec2(2x+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon