wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate from first principle:

(iv) x2sinx

Open in App
Solution

Given: f(x)=x2sinx

The derivative of a function f(x) is defined as:

f(x)=limh0f(x+h)f(x)h

Putting f(x) in above expression, we get:

f(x)=limh0(x+h)2sin(x+h)x2sinxh


f(x)=limh0(x2+h2+2xh)(sinxcosh+cosxsinh)x2sinxh

=limh0x2sinx(cosh1)h+limh0x2cosxsinhh+limh0(h2+2xh)(sinxcosh+cosxsinh)h

=x2sinxlimh0sin2h2(h2)2.(h2)2h+x2cosx+limh0(h+2x)(sinxcosh+cosxsinh)

[limh0sinhh=1]

=x2sinxlimh0h4+x2cosx+(0+2x)(sinxcos0+cosxsin0)

=x2cosx+2xsinx

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon