Given: f(x)=x2sinx
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in above expression, we get:
f′(x)=limh→0(x+h)2sin(x+h)−x2sinxh
f′(x)=limh→0(x2+h2+2xh)(sinxcosh+cosxsinh)−x2sinxh
=limh→0x2sinx(cosh−1)h+limh→0x2cosxsinhh+limh→0(h2+2xh)(sinxcosh+cosxsinh)h
=−x2sinxlimh→0sin2h2(h2)2.(h2)2h+x2cosx+limh→0(h+2x)(sinxcosh+cosxsinh)
[∵limh→0sinhh=1]
=−x2sinxlimh→0h4+x2cosx+(0+2x)(sinxcos0+cosxsin0)
=x2cosx+2xsinx