Given:
f(x)=sin(2x−3)
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0sin(2x+2h−3)−sin(2x−3)h
Applying formula
sinC−sinD=2cos(C+D2)sin(C−D2), we get:
⇒f′(x)=limh→02cos(2x+2h−3+2x−32)sin(2x+2h−3−2x+32)h
⇒f′(x)=limh→0=2cos(4x+2h−62)sin(h)h
⇒f′(x)=2cos(4x+0−62)(1)
(∵limx→0sinxx=1)
⇒f′(x)=2cos(2x−3)