Given:
f(x)=(x2+1)(x−5)
=x3−5x2+x−5
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→0(x+h)3−5(x+h)2+(x+h)−5−(x3−5x2+x−5)h
⇒f′(x)=limh→0(x+h)3−x3−5{(x+h)2−x2}+hh
⇒f′(x)=limh→0(h){(x+h)2+x2+x(x+h)}−5(h)(2x+h)+hh
⇒f′(x)=limh→0[(x+h)2+x2+x(x+h)−5(2x+h)+1]
⇒f′(x)=x2+x2+x2−5(2x)+1
⇒f′(x)=3x2−10x+1
Hence, the derivative of (x2+1)(x−5) is 3x2−10x+1