Given:
f(x)=2x+3x−2
The derivative of a function f(x) is defined as:
f′(x)=limh→0f(x+h)−f(x)h
Putting f(x) in the above expression, we get:
⇒f′(x)=limh→02(x+h)+3x+h−2−2x+3x−2h
⇒f′(x)=limh→0(2x+3)(x−2)+2h(x−2)−[(2x+3)(x−2)+h(2x+3)]h(x+h−2)(x−2)
⇒f′(x)=limh→02(x−2)−(2x+3)(x+h−2)(x−2)
⇒f′(x)=−7(x−2)2
Therefore, the derivative of 2x+3x−2 is −7(x−2)2.