Differentiate given problems w.r.t.x.
sin3 x +cos6 x.
Let y= sin3 x +cos6 x.
Differentiating w.r.t. x, we get
dydx=ddx sin3 x +cos6 x= ddx(sin x)3+ddx(sin x)6
= 3(sin x)3−1ddx(sin x)+6(cos x)6−1ddx(cos x)
=3 sin2cosx+6 cos5x(−sinx)=3 sin2xcosx−6sinx cos5x
= 3sinxcosx(sinx − 2 cos4 x)