Let y=sin−1(3x−4x3)
Putting x=sinθ, we get
y=sin−1(3sinθ−4sin3θ)=sin−1(sin3θ)
(i) When 12<x<1, then
x=sinθ⇒12<sinθ<1
⇒π6<θ<π2
⇒π2<3θ<3π2
⇒−π2>−3θ>−3π2
⇒−π2<π−3θ<π2
y=sin−1(sin3θ)
⇒y=sin−1(sin(π−3θ))
⇒y=π−3θ
⇒y=π−3sin−1x
dydx=0−3√1−x2=−3√1−x2
(ii) When −1<x<−12
x=sinθ⇒−1<sinθ<−12
⇒−π2<θ<−π6
⇒−3π2<3θ<−π2
⇒π2<−3θ<3π2
⇒−π2<−π−3θ<π2
y=sin−1(sin3θ)
y=sin−1(sin(−π−3θ))
y=−π−3θ
y=−π−3sin−1x
dydx=−0−3√1−x2=−3√1−x2