Differentiate the following functions with respect to x :
a0xn+a1xn−1+a2xn−2+....+an−1x+an.
We have,
ddx(a0xn+a1xn−1+a2xn−2+....+an−1x+an)
=a0d(x)ndx+a1d(x)n−1dx=a2d(x)n−2dx+....+an−1d(x)dx+and(1)dx
=na0xn−1+(n−1)a1xn−2+....+an−1+0
=na0xn−2+(n−1)a1xn−2+.....+an−1