wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the following functions with respect to x
(xcosx)x+(xsinx)1/x

Open in App
Solution

Let y=(xcosx)x+(xsinx)1/x. Then,

y=elog(xcosx)x+elog(xsinx)1/x [ y=axcan be written as y=exloga]


y=exlog(xcosx)+e1/xlog(xsinx)

ddx{exlog(xcosx)}+ddx{e1/xlog(xsinx)}

ddx=exlog(xcosx)ddx|xlog(xcosx)|+e1/xlog(xsinx)ddx{1xlog(xsinx)}

dydx=(xcosx)xddx|x(logx+logcosx)|+(xsinx)1/xddx{1x(logx+logsinx)}

dydx=(xcosx)x{(logx+logcosx)+x(1xtanx)}+(xsinx)1/x{1x(1x+cotx)1x2(logx+logsinx)}

dydx=(xcosx)x|log(xcosx)+(1+xtanx)|+(xsinx)1/x{1x2+cotxxlogxx2logsinxx2}

dydx=(xsinx)x|log(xcosx)+1xtanx|+(xsinx)1/x{1+xcotxlog(xsinx)x2}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon