Differentiate the following questions w.r.t. x.
sin(tan−1e−x).
Ley y =sin(tan−1e−x).
Differentiate both sides w.r.t. x, we get
⇒ dydx=ddx[sin(tan−1(e−x))]
=cos{tan−1(e−x)}ddx{tant−1(e−x)} (Using chain rule)=cos{tant−1(e−1)}11+(e−x)2ddx(e−x)=cos(tant−1(e−x))11+e−2x.(−e−x)=−e−xcos(tan−1e−x)1+e−2x