Differentiate the function given below w.r.t. x:
(ax2+cotx)(p+qcosx)
Given:(ax2+cotx)(p+qcosx)
Differentiating with respect to x, we get
ddx[(ax2+cotx)(p+qcosx)]
=(p+qcosx)ddx(ax2+cotx)+
(ax2+cotx)ddx(p+qcosx)
=(2ax−csc2x)(p+qcosx)+
(ax2+cotx)(−qsinx)
⎡⎢
⎢
⎢⎣∵ddxcotx=−csc2xddxcosx=−sinx,ddxxn=nxn−1⎤⎥
⎥
⎥⎦
=(2ax−csc2x)(p+qcosx)−
(ax2+cotx)(qsinx)