wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function given below w.r.t. x:

(ax2+cotx)(p+qcosx)


Open in App
Solution

Given:(ax2+cotx)(p+qcosx)

Differentiating with respect to x, we get

ddx[(ax2+cotx)(p+qcosx)]

=(p+qcosx)ddx(ax2+cotx)+

(ax2+cotx)ddx(p+qcosx)

=(2axcsc2x)(p+qcosx)+

(ax2+cotx)(qsinx)

⎢ ⎢ ⎢ddxcotx=csc2xddxcosx=sinx,ddxxn=nxn1⎥ ⎥ ⎥

=(2axcsc2x)(p+qcosx)

(ax2+cotx)(qsinx)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon