wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function given below w.r.t. x:

x2cosπ4sinx


Open in App
Solution

Let y=x2cosπ4sinx

dydx=d⎜ ⎜x2cosπ4sinx⎟ ⎟dx

dydx=cosπ4⎢ ⎢ ⎢ ⎢sinxd(x2)dxx2d(sinx)dx(sinx)2⎥ ⎥ ⎥ ⎥


dydx=12[x[2sinxxcosx](sinx)2]

divide by (sinx)2

dydx=x2[2cscxxcscxcotx]

dydx=x2cscx[2xcotx]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon