wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function given below w.r.t. x:

x2sinx+cos2x


Open in App
Solution

Let y=x2sinx+cos2x

Differentiating with respect to x, we get

dydx=ddx(x2sinx+cos2x)

dydx=ddx(x2sinx)+ddxcos2x

dydx=sinxddx(x2)+x2ddx(sinx)+ddxcos2x

dydx=(2xsinx+x2cosx)2sin2x

[dxndx=nxn1 , d(cosθ)dx=sinθ & d(sinθ)dx=cosθ]

dydx=2xsinx+x2cosx2sin2x


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon