wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function w.r.t. x.
cosx.cos2x.cos3x

Open in App
Solution

Let y=cosx.cos2x.cos3x
Taking logarithm on both the sides, we obtain
logy=log(cosx.cos2x.cos3x)=log(cosx)+log(cos2x)+log(cos3x)
Differentiating both sides with respect to x, we obtain
1ydydx=1cosx.ddx(cosx)+1cos2x.ddx(cos2x)+1cos3x.ddx(cos3x)
dydx=y[sinxcosxsin2xcos2x.ddx(2x)sin3xcos3x.ddx(3x)]
dydx=cosx.cos2x.cos3x[tanx+2tan2x+3tan3x]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon