Let y=√(x−1)(x−2)(x−3)(x−4)(x−5)
Taking logarithm on both the sides, we obtain
logy=log√(x−1)(x−2)(x−3)(x−4)(x−5)
⇒logy=12log[(x−1)(x−2)(x−3)(x−4)(x−5)]
⇒logy=12[log[(x−1)(x−2)]−log[(x−3)(x−4)(x−5)]]
⇒logy=12[log(x−1)+log(x−2)−log(x−3)−log(x−4)−log(x−5)]
Differentiating both sides with respect to x, we obtain
⇒1ydydx=12[1x−1.+1x−2−1x−3−1x−4−1x−5]
⇒dydx=y2(1x−1+1x−2−1x−3−1x−4−1x−5)
∴dydx=12√(x−1)(x−2)(x−3)(x−4)(x−5)[1x−1+1x−2−1x−3−1x−4−1x−5]