wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Differentiate the function w.r.t. x.
xsinx+(sinx)cosx

Open in App
Solution

Let y=xsinx+(sinx)cosx
Also, let u=xsinx and v=(sinx)cosx
y=u+v
dydx=dudx+dvdx ...(1)
u=xsinx
logu=log(xsinx)
logu=sinxlogx
Differentiating both sides with respect to x, we obtain
1ududx=ddx(sinx).logx+sinx.ddx(logx)
dudx=u[cosxlogx+sinx.1x]
dudx=xsinx[cosxlogx+sinxx] ...(2)
v=(sinx)cosx
logv=log(sinx)cosx
logv=cosxlog(sinx)
Differentiating both sides with respect to x, we obtain
1vdvdx=ddx(cosx)×log(sinx)+cosx×ddx[log(sinx)]
dvdx=v[sinxlog(sinx)+cosx.1sinx.ddx(sinx)]
dvdx=(sinx)cosx[sinxlogsinx+cosxsinxcosx]
dvdx=(sinx)cosx[sinxlogsinx+cotxcosx]
dvdx=(sinx)cosx[cotxcosxsinxlogsinx] ...(3)
From (1), (2) and (3), we obtain
dydx=xsinx[cosxlogx+sinxx]+(sinx)cosx[cotxcosxsinxlogsinx]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon