Let y=(logx)cosx
Taking logarithm on both the sides, we obtain
logy=cosx.log(logx) ..... [∵logax=xloga]
Differentiating both sides with respect to x, we obtain
1y.dydx=ddx(cosx)×log(logx)+cosx×ddx[log(logx)]
⇒1y.dydx=−sinxlog(logx)+cosx×1logx.ddx(logx)
⇒dydx=y[−sinxlog(logx)+cosxlogx×1x]
∴dydx=(logx)cosx[cosxxlogx−sinxlog(logx)]