Let y=(logx)x+xlogx
Also, let u=(logx)x and v=xlogx
∴y=u+v
⇒dydx=dudx+dvdx ... (1)
u=(logx)x
⇒logu=log[(logx)x]
⇒logu=xlog(logx)
Differentiating both sides with respect to x, we obtain
1ududx=log(logx)+x⋅1logx⋅1x
⇒dudx=(logx)x[log(logx)+xlogx.1x]
⇒dudx=(logx)x[log(logx)+1logx]
⇒dudx=(logx)x[log(logx).logx+1logx]
⇒dudx=(logx)x−1[1+logx.log(logx)] ...(2)
v=xlogx
⇒logv=log(xlogx)
⇒logv=logx.logx=(logx)2
Differentiating both sides with respect to x, we obtain
1vdvdx=ddx[(logx)2]
⇒1v.dvdx=2(logx).ddx(logx)
⇒dvdx=2v(logx).1x
⇒dvdx=2xlogxlogxx
⇒dvdx=2xlogx−1.logx ...(3)
Therefore, from (1), (2), and (3), we obtain
⇒dydx=(logx)x−1[1+logx.log(logx)]+2xlogx−1.logx